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(A, B)-Invariant Polyhedral Sets of
Linear Discrete-Time Systems
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Abstract. The problem of confining the trajectory of a linear discrete-
time system in a given polyhedral domain is addressed through the
concept of (A, B)-invariance. First, an explicit characterization of
(A, B)-invariance of convex polyhedra is proposed. Such characteriza-
tion amounts to necessary and sufficient conditions in the form of linear
matrix relations and presents two major advantages compared to the
ones found in the literature: it applies to any convex polyhedron and
does not require the computation of vertices. Such advantages are felt
particularly in the computation of the supremal (A, B)-invariant set
included in a given polyhedron, for which a numerical method is pro-
posed. The problem of computing a control law which forces the system
trajectories to evolve inside an (A, B)-invariant polyhedron is treated as
well. Finally, the (A, B)-invariance relations are generalized to persist-
ently disturbed systems.

Key Words. Linear systems, linear programming, convexity,
polyhedra, invariance.

1. Introduction

Linear systems subject to pointwise-in-time constraints have proved to
be objects of great interest for both theoreticians in optimization/control
and practitioners. The usefulness of this model is due largely to the fact
that, in real-life control problems, such constraints arise often from either
physical limitations on input and output variables or the validity domain of
linearization of nonlinear systems.
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In particular, the positive invariance approach has been used to solve
a large number of problems on constrained dynamical systems. A set in the
state space is positively invariant if any trajectory originated from this set
does not leave it. It is a fact that physical limitations inherent to the operation
of actual dynamical systems result very often in linear constraints on the
state and/or control variables. As a consequence, much effort has been
directed toward the development of the theory of positively invariant
polyhedral sets, initially for discrete-time systems (Refs. 1-4), but also for
continuous-time systems (Refs. 4-6). The most direct application of this
theory to the solution of constrained control problems consists in verifying
the existence of a state feedback control law which achieves the positive
invariance of the polyhedron defined by the constraints. The drawbacks of
this approach are twofold: closed-loop positive invariance of the polyhedron
of constraints can be achieved seldom; the use of linear state feedback can
restrict the possibility of achieving constraints satisfaction. Then, one is led
to consider other sets, different from the set of constraints, and also more
general control laws. Such considerations are naturally embedded in the
concept of (A, B)-invariance.

In the framework of the geometric approach to the control of linear
systems, the concept of (A, B)-invariance of subspaces plays an important
role. In particular, it has been applied widely to the solution of some classical
control problems, such as disturbance and input/output decoupling (Refs.
7-8). This concept of (A, B)-invariance, although with a different denomina-
tion, has been applied also to convex polyhedra, to characterize the possibil-
ity of controlling discrete-time systems subject to pointwise-in-time
trajectory constraints.

In the sixties and seventies, seminal works on this subject (see e.g.
Refs. 9-11) have treated this problem essentially at the conceptual level.
Concerning more applied results, a vertex-by-vertex characterization has
been proposed in Ref. 12 for compact polyhedra. In Ref. 13, this approach
was used to solve a minimum-time control problem. Finally, in Ref. 14, the
results of Ref. 12 were extended to uncertain additively disturbed systems.
However, two major drawbacks can be detected in this approach. First, it
applies only to compact polyhedra, whereas in many problems the polyhed-
ron defined by state, control, or output constraints is not compact. Second,
depending on the complexity of the polyhedron considered, the computation
of its vertices and consequently the test of (A, B)-invariance can become
expensive numerically.

In general, a polyhedron defined by linear constraints does not possess
the (A, B)-invariance property. However, constraint satisfaction can be
achieved if the initial states are forced to belong to an (A, B)-invariant set
contained in the set of constraints. The set which is generally chosen, because
it is the least conservative, is the supremal set or an approximation of it,
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that is, the set which contains all the other sets. Several algorithms have
been proposed to compute this set (Refs. 14-15). As they are based on
vertex-by-vertex characterization of (A, B)-invariance, these algorithms are
demanding numerically. The basic contribution of this paper is in charac-
terizing the property of (A, B)-invariance of convex polyhedra for discrete-
time systems. By application of the Farkas lemma, necessary and sufficient
conditions under which a general convex polyhedron is (A, B)-invariant are
established in the form of linear matrix relations. A particular form of these
relations is derived in the case of 0-symmetrical polyhedra. The problem of
computing a control law which achieves closed-loop positive invariance of
an (A, B)-invariant polyhedron is treated as well. A piecewise linear control
law is proposed. It is an extension to the noncompact case of the control
law proposed in Refs. 12, 14. (A, B)A-contractive polyhedral sets are also
introduced and characterized. Then, the supremal (A, B)-invariant sets con-
tained in a given polyhedron are studied. Such sets are characterized theoreti-
cally and a numerical method, based on the (A, B)-invariance relations, is
proposed for their computation.

Notation and Terminology. In mathematical expressions, a colon
stands for "such that". By convention, inequalities between vectors and
inequalities between matrices are componentwise. N and R represent
respectively the sets of natural and real numbers. In represents the identity
matrix of order n. A vector or matrix is said to be nonnegative if all its
components are nonnegative. The absolute value |M| of a matrix M [resp.
|v| of a vector v] is defined as the matrix [resp. vector] of the absolute value
of its components. Mi represents the ith row of M, and Mij represents the
element of row i and column j of matrix M. Let Q be a set in a normed
linear space X, with the norm represented by || • ||. The set O is said to be
bounded if there exists a scalar s> 0 such that ||x|| <s, VxeO; Q is closed if
it contains all its closure points; finally, Q is compact if it is bounded and
closed. In this work, only closed set are studied, and the linear spaces consid-
ered are over the field of real numbers R. The column vectors of a matrix
M form a generating set of a polyhedral cone 9? if and only if there exists
a nonnegative vector % such that x = ME,, VxeR . Each column vector of M
is then called a generator of R. A generating set is said to be a minimal
generating set if it is defined by the smallest number of generators.

2. Characterization of (A, B)-Invariance

Consider the linear time-invariant discrete-time system described by
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with keN ; xe R" is the state vector and u e R m is the control vector.
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Definition 2.1. A nonempty closed set Q c Rn is said to be positively
invariant with respect to a dynamical system x(k+ 1 ) = f ( x ( k ) ) if

Definition 2.2. A nonempty closed set £}<=Rn is said to be (A, B)-
invariant with respect to the system (1) if

In other words, Q is (A, B)-invariant if, Vx(0)eQ, there exists a control
sequence {u(k)}, k e N , such that the trajectory of the state vector of the
controlled system is completely contained in Q. The definition is analogous
to that of (A, B)-invariant subspaces (Ref. 7) or controlled invariant sub-
spaces (Ref. 8), but in a more general framework.

Definition 2.3. The one-step admissible set to Q is defined as follows
(Ref. 14):

By definition, 2(Q) is the set of all states which can be transferred to
Q in one step. Then, it is clear that the (A, B)-invariance of O is equivalent
to the following geometric condition (Refs. 10-11).

Theorem 2.1. The set O<=Rn is (A, B)-invariant with respect to the
system (1) if and only if Q c 2(Q).

2.1. (A, B)-Invariance of Polyhedra: General Case. The study will now
be restricted to convex polyhedra containing the origin, that is, to the case
where

For a given time k, admissibility of the state vector at the time k+1 is
characterized by the set of constraints

These constraints define a convex polyhedron II on the linear space defined
by the extended vector [x(k)]. Then, the largest set of one-step admissible
state vectors associated with (2) is the projection of II onto the state space.
An explicit expression of this projection can be obtained from the Farkas
lemma; see e.g. Ref. 16.
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Proposition 2.1. The one-step admissible set 2(R[G, p]) is the convex
polyhedron R[TGA, Tp], where the row vectors of the matrix T form a
minimal generating set of the nonnegative left kernel of the matrix GB,
defined by

Proof. The row vectors of T generates the polyhedral cone F. Then
from the application of the Farkas lemma (Refs. 16-18),

As shown in Ref. 13, it is possible to compute the matrix T by means
of the Fourier-Motzkin elimination technique (Ref. 16).

From Theorem 2.1 and Proposition 2.1, the (A, B)-invariance of
R[G, p] can be characterized geometrically by

This characterization can be translated into matrix relations by means of
the following result, which can be derived from an extended version of the
Farkas lemma, found in e.g. Ref. 3.

Theorem 2.2. The convex polyhedron R[G, p] c Rn is (A, B)-invariant
if and only if there exists a nonnegative matrix Y such that

One advantage of the above characterization is that Theorem 2.2 applies
to any convex closed polyhedron, contrarily to the characterization proposed
in Refs. 12, 14, which applies only to compact polyhedra. The second advan-
tage is of a numerical nature. In the approach proposed in Refs. 12, 14
for testing (A, B)-invariance, one needs to compute first the vertices of the
polyhedron, which is known to be a hard computational task for large-
dimensional systems. Then, one has to test at each vertex for the existence
of an admissible control. On the contrary, efficient methods are available to
compute the matrix T; see e.g. Refs. 13, 17. Then, conditions (5)-(6) can
be checked by means of the solution of a simple linear program.

The following additional properties can be pointed out:

(i) In the case T=0, the polyhedron R[TGA, Tp] becomes the whole
state space Rn, and condition (4) is satisfied trivially. Relations (5)-(6) are
satisfied with Y=0. The convex polyhedron R[G, p] is then (A, B)-invariant
trivially.
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(ii) In the case of an autonomous system (B = 0), F is the entire non-
negative orthant R8, T=Ig, and relations (5)-(6) become the classical posi-
tive invariance relations; see e.g. Refs. 1-3.

(iii) Theorem 2.2 can be extended to the case when the control vector
is subject to linear constraints,

In this case, the convex polyhedron R[G, p] is u - (A, B)-invariant with
respect to system (1) subject to the constraint u(k)€^R[U, y/] if and only
if there exists a nonnegative matrix Y such that

where the rows of the matrix [Tg Tu] form a minimal generating set of the
nonnegative left kernel of the matrix [ G B ] .

(iv) Finally, it is interesting to note from relations (5)-(6) that the
(A, B)-invariance of the characteristic cone R[G, 0] = {x: Gx = 0} is a neces-
sary condition for the (A, B)-invariance of R[G, p].

2.2. (A, B)-Invariance of Symmetrical Polyhedra. The case of 0-sym-
metrical polyhedra is now considered: Q = S(Q, u), with

Note that S(Q, u) can be written in the form R[G, p] with

Let [T 1 , T2] be a matrix whose rows form a minimal set of generators
of the polyhedral cone F; see (3), with G given above. Now, form the matrix
J by deleting from the matrix T1 - T2 the rows

The following result specializes the (A, B)-invariance relations to the sym-
metrical case. The proof is similar to that of the continuous-time case, which
can be found in Ref. 19.

Corollary 2.1. The symmetrical convex polyhedron S(Q, u) c Rn is
(A, B)-invariant with respect to the system (1) if and only if there exists
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a matrix Y such that

Note that any row vector t belonging to the left kernel of the map QB
can be written in the form

This means that ( t 1 , t2]T belongs to T; see (3), with

Therefore, the matrix J necessarily contains as a submatrix a row vector
basis of the left kernel of map QB. Based on this fact, the following comple-
mentary result, which specializes Corollary 2.1 to the case of vector sub-
spaces, can be proved easily.

Corollary 2.2. The subspace ker( Q) e Rn is (A, B)-invariant if and only
if there exists a matrix M such that MQ = KQA, where the row vectors of
K span the left kernel of map QB.

Consider now the factor space X = Rn/ker(Q) and let P: Rn -> X be
the canonical projection. The following maps can be defined on X (Ref, 7):

(i) the map A induced in X by A, given by AP = PA;
(ii) the map B, given by B=PB;
(iii) the map Q, given by QP=Q.

Then, the following factor system can be defined in X (Ref. 7):

as well as the polyhedron

and its extension to Rn
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Then, the polyhedron S(Q, u) can be decomposed into the following form
(Ref. 16):

The following result shows that the test for (A, B)-invariance of
unbounded symmetrical polyhedra can be decomposed.

Corollary 2.3. The symmetrical polyhedron S(Q, u) is (A, B)-invari-
ant with respect to the system (1) if and only if:

(i) the subspace ker(Q) is (A, B)-invariant; _
(ii) the compact polyhedron S(Q, u) is (A, B)-invariant with respect

to the system (12).

Proof. Initially, suppose that S(Q, u) is (A, B)-invariant. The (A, B)-
invariance of ker(Q) follows from (10), from the fact that the rows of J
span the left kernel of QB, and from Corollary 2.2. Again from (10), there
exists a matrix Y such that

hence,

This relation, together with (11), shows the (A, B)-invariance of S(Q, u).
Conversely, suppose that ker(Q) is (A, B)-invariant and that S(Q, u)

is (A, B)-invariant with respect to the system (12). From (15), every vector
xeS(Q, u) can be written in the form

By assumption, there exists a matrix FQ such that ker(Q) is (A + BFQ)-
invariant and a control sequence

Then, it is clear that S(Q, u) is positively invariant under the control law

2.3. (A, B)L-Contractive Sets. In the case of compact (A, B)-invariant
sets containing the origin, it is often important to increase the convergence
rate of the trajectory to the equilibrium point. For example, this can help the
system incorporate the effects of disturbances and/or uncertainties. (A, B)-
invariance and convergence rate are conjugated in the following definition.
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Definition 2.4. Given 0<A<1 , a compact set QcRn is said to be
(A, B)-invariant A-contractive [or simply (A, B)A-contractive] with respect
to the system (1) if

there exists a control vector ueRn such that Ax + BueAQ, VxeQ.

It is clear that an (A, B)-invariant set is an (A, B)A-contractive set with
A = 1 .

In the case where the origin belongs to the interior of a convex polyhed-
ron R[G, p], p<0, the condition (2) for one-step admissibility can be
replaced by the (A, B)A-contractivity condition,

which results in the following points:

(i) Given a contraction rate A, the one-step admissible set of the
polyhedron R[G, p] is the convex polyhedron R[TGA, ATp],
where the matrix T is defined as in Theorem 2.2.

(ii) The convex polyhedron R[G, p] cRn is (A, B)A-contractive with
respect to the system (1) if and only if there exists a nonnegative
matrix Y such that (5) is verified and

(iii) The convex symmetrical polyhedron S(Q, u) c<Rn is (A, B)A-con-
tractive with respect to the system (1) if and only if there exists
a nonnegative matrix Y such that (10) is verified and

3. Supremal (A, B)-lnvariant Set

Suppose that the state of the system (1) is subject to the constraint
xeQ. In general, the set Q is not (A, B)-invariant. However, a possible
solution to the constrained problem is to restrict the state to an (A, B)-
invariant set contained in Q. It is also desirable that, in some sense, this set
be as large as possible. To refine this issue, consider the following property,
whose proof is straightforward.

Proposition 3.1. The family of all (A, B)-invariant sets contained in a
convex set Q is closed under the operation "convex hull of the union".
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Since O is closed by assumption, this proposition guarantees the exist-
ence [in the family of (A, B)-invariant sets contained in Q] of a supremal
element (an element which contains all the other elements),

CI (O) ^ supremal (A, B)-invariant set contained in Q.

Indeed, C°°(O) is the set defined by the convex hull of the union of all
(A, B)-invariant sets in Q. The supremal set can be characterized by the
following recurrence formula (Ref. 14):

It should be noticed that the set Ci is the set of states for which there
exists a control sequence able to force them to stay in Q in i steps. According
to (18), Ci=Ci-1, and the supremal set is obtained for i-»oo.

One can introduce also a contraction rate A and adapt the recurrence
(18)-(19) to compute the set

C""(Q, A) = supremal (A, B)A-contractive set contained in Q.

For doing so, it suffices to replace the recurrence (18)-(19) by

The supremal (A, B)-invariant set contained in R[G, p] can be con-
structed by means of the recurrence (18)-(19). Such a construction requires
generally a large computational effort. Along the iterative process, many
redundant inequalities may be generated. Therefore, it is particularly desir-
able to implement an algorithm which generates only nonredundant inequal-
ities at each iteration. This property can be achieved using the (A, B)-
invariance relations (5)-(6), as shown in the following algorithm (Ref. 20).

Step 1. Initialize i=1, l0 = 0, T0 = 0, t0 = 0, G0 = G, p0 = p, g0=g.
Define a precision e.

Step 2. Compute the matrix Tie Rti x g1, whose rows form a generating
set of the polyhedral cone

and decompose Ti in the form
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Step. 3. Solve by linear programming the following problems, for j=
1 , . . . , r i :

If Yipi- U ip i<e, Vj, then C X (R (G , p]) = R[G', pi]; stop.
If 3j: Y ip i- U ip i>e, order the rows of Ui and Yi by means
of a permutation matrix Pi in the form

Step 4. Construct the matrices

Step 5. Do i=i + 1, and return to Step 2.

The fact that this algorithm converges to C X ( R [ G , p]) follows from the
next result.

Proposition 3.2. The polyhedron R[G i + 1 , pi+1] is identical to the set
2(R[G i ,p i]) n R[Gi,pi].

Proof. From Proposition 2.1 and (22), the set 2(R[Gi,pi]) n R[G i , pi]
is defined by the inequalities

Note that the rows associated to Ti-1 in (22) have been considered already
in the computation of R[G i , p i ] .
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The inclusion of 2(R[G i , p i ] ) n R[G i , pi] in R[G i+1, Ri+i] is evident.
Conversely, every point xeR[G i+1, pi+1] verifies, with the nonnegative
matrix Yi verifying (23)-(24),

which implies,up to the given precision,

Concerning this algorithm, the following should be pointed out.

(i) For some cases [namely, when rank (G i) <n], the linear program
(23) may not be solvable for some values of j. In this case, the associated
rows Uj and Yi must be included in matrices U2 and Yi, respectively; see
(25).

(ii) The set C°°(Q) is polyhedral if and only if it is generated in a
finite number of iterations. However, it can be approximated by a polyhed-
ron. Indeed, it has been shown in Ref. 14 that, given the set C^(Q, A),
0<A<1, then VA' such that A < A ' < 1 , 3i' such that Ci' is A'-contractive,
with Ci' given by the recurrence (20). Therefore, an approximation of C""(Q)
can be computed through the recurrence (20), with A close to 1, until eventu-
ally obtaining an (A, B)-invariant polyhedron Ci.

It is interesting to note that, for unbounded symmetrical polyhedra, the
computation of V°°(Q) can be performed in a decomposed manner. Then,
let S(Q, n) be an unbounded symmetrical polyhedron, and let V* be the
largest (A, B)-invariant subspace contained in ker(Q). Consider also the
factor space X = Rn/y* and the reduced-order system

The maps A and B are defined from the orthogonal projection Pv: Rn -X,
the same way as their analogs in the system (12). The polyhedron S(Q, ^)
is now decomposed in the following form:

where

Define also the set

C X (S (Q, u)) = supremal (A, B)-invariant set contained in S(Q, n),
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and its extension to Rn,

Theorem 3.1. The supremal (A, B)-invariant set contained in the
polyhedron S(Q, n) can be decomposed as follows:

Proof. For all x e v * + C*(S(Q,n ) ) , there exist zw-ef* and
xce^"°(S(Q, n)) such that x = xv + xc. From the construction of T* and
^°°(S(Q, n)), 3F" such that r* is (A + BF°)-invariant and there exists a
control sequence (u(k)}, ke^V, such that xc(k)eV~* + <#'*(S(Q, /*)). Hence,
V* + <#'a(S(Q, u)) is an (A, B)-invariant set contained in S(Q, n).

Conversely, consider a generic point x(k)eVx'(S(Q, n)). Since
^X(S(Q, n)) is (A, B)-invariant, then there exists a control u(k) such that
x(k+ 1)eS(Q, n). The vector x(k)eS(Q, n) can be decomposed in the fol-
lowing form:

The control vector u(k) can be decomposed in the form

Therefore,

Consider now the system (26), and suppose that xs(k)i'^cc(S(Q, u*)). One
can then verify that

which contradicts the assumption x(k)ec$x'(S(Q,p)). Hence,

and the proof is complete.

4. Control Law Computation

The satisfaction of the (A, B)-invariance conditions guarantees, for any
point in the polyhedron considered, the existence of a control which forces
the state trajectory to stay in it. However, that does not presuppose a particu-
lar type of control law. Nevertheless, it is important, even mandatory in



practice, that the system be controlled by means of a closed-loop control
law.

An answer to this question has been given in Ref. 12 and has been
improved in Ref. 14: a piecewise linear control law was proposed to achieve
the closed-loop positive invariance of compact (A, B)-invariant polyhedra.
To this end, the polyhedral sets are divided in regions defined by the convex
hull of the origin and n vertices, where n is the dimension of the system.
Then, a state feedback control law is computed for each region. The control
law described in the sequel extends such a law to the case of noncompact
polyhedra.

4.1. General Case. Any polyhedron R[G, p] can be decomposed in
the form of the sum of the characteristic cone R[G, 0] = {x: Gx = 0} and a
polytope II (Ref. 16). Then, a set of admissible controls ( v 1 , . . . , v p ) can
be associated to the vertices ( x 1 , . . . , x p ) o f II. They verify
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Similarly, a set of controls ( w 1 , . . . , wq) can be associated to the set of
generators Mj, of R[G, 0], so that

Each point in R[G, p] is represented by the set of coordinates
( a 1 , . . . , aq, B1,. . ., pp) through the relation

Then, the following control function can be considered:

For p>0, a partition of R[G, p] can be derived from the parametrization
(27). Each region Xr of R[G, p] is generated from the relation (27) by a set
of generators and/or vertices (M j , x i ) , j ' e / r , i ' e j r , such that:

(i) card Jr) + card(j r) = n, where card( • ) represents the number of
elements in the set considered.

(ii) A point x&Xr is given by
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The transition between two adjacent regions is characterized by a pivot-
ing operation for which one of the coefficients (a j, Bi) vanishes and either
a generator M j , j $ J r , or a vertex xi, i$Jr, replaces [in the representation
(29)] the generator or vertex for which either aj or Bi has vanished. The
interior of the intersection of two adjacent regions is empty, and the union
of all regions is the polyhedron R[G, p].

Let Xr be a square matrix whose columns are the generators/vertices
which define the region Xr, and let Ur be a matrix whose columns are the
associated control vectors wj , ui. A piecewise linear control law is then given
by

This law is a possible realization of the law (28). Since compact
polyhedra are defined completely by their vertices, the regions in which they
are divided are compact polyhedra formed by the convex hull of the origin
and n vertices. In this case, the control law (30) becomes that proposed in
Refs. 12, 14.

4.2. Symmetrical Polyhedra. For unbounded symmetrical polyhedra,
the control law can be computed in a decomposed manner. Consider the
unbounded symmetrical polyhedron S(Q, u) and the matrix P defined (as
in Section 3.2) as the canonical projection of Rn onto the factor space X =
Rn/ker(Q).

The following result can be established.

Corollary 4.1. If the polyhedron S(Q, u) is (A, B)-invariant with
respect to the system (1), then a control law such that it is positively invariant
in closed loop is given by

where FQ is such that ker(Q) is (A + BFQ)-invariant and us(k) is a control
law such that the compact polyhedron S(Q, /*) [see (13)] is positively invari-
ant with respect to the system

where FQ is defined by FQP = FQ.

Proof. Suppose that x(k)eS(Q, /*). Under the proposed control law,
one has
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Hence,

Then by assumption, us(k) is such that x(k+ 1)eS(Q, //)._The existence of
us(k) follows from Corollary 2.3 and from the fact that, if S(Q, n) is (A, B)-
invariant, then it is (A + BFQ, B)-invariant as well. In addition, since
x(k+1)eS(Q, it), then

5. Persistently Disturbed Systems

Consider the following linear discrete-time system:

where deRq is a disturbance vector, supposed constrained to evolve inside
a bounded domain D=Rq,

One can notice that this kind of disturbance acts persistently in time, and
its energy is infinite. This is why it is named persistent disturbance by some
authors.

Definition 5.1. A nonempty closed set Qc Rn is said to be D-(A, B)-
invariant with respect to the system (31)-(32) if

3 a control vector « such that Ax + Bu + EdeO, VxeQ, VdeD.

This definition assumes that the disturbance vector is not measured.
The case of measurable disturbances has been considered in Ref. 18.

The one-step admissible set is now defined as in Ref. 14,

Therefore, the set U is D-(A, B)-invariant with respect to (31)-(32) if and
only if Oc.2(Q, D).
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Consider now the polyhedral case,

with

Define the components 5i of the vector S as follows:

For a given k, admissibility of the state vector in k + 1 is now characterized
by

One can notice that the role of the vector S is to absorb the effect of
the disturbances. Then, the following results can be derived.

Proposition 5.1. In the polyhedral case, the one-step admissible set is
given by

where the rows of the matrix T form a minimal generating set of the nonnega-
tive left kernel of the matrix GB.

Theorem 5.1. The convex polyhedron R[G, p] is D-(A, B)-invariant
with respect to the system (31)-(32), with D = R[D, w], if and only if there
exists a nonnegative matrix Y such that

As for the undisturbed case, one can show the existence of a supremal
D-(A, B)-invariant set contained in a given set Q,

C°°(Q, D) £ supremal D-(A, B)-invariant set contained in Q,

which is given by

An algorithm for computing C x(to, D), with Sl = R[G,p], D = R[D, w], can
be derived easily from the algorithm of Section 3.
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A practical application of D-(A, B)-invariant polyhedra is in the solu-
tion of the persistent disturbance attenuation problem, also known as the
l1-control problem; see e.g. Refs. 21-22. In particular, it has been shown
that the possibility of achievement of a given l1-performance level can be
characterized by the existence of a nonempty internally stabilizable D-
(A, B)-invariant domain contained in the polyhedral region of the perform-
ance constraints.

6. Numerical Example

Consider the system (1) for which

and the polyhedron R[G, p] with

The computation of the largest (A, B)A-contractive set contained in
R[G, p], with A = 0.8, results in c(R[G, p], A.) = R[G1, p 1 ] , with

For R[G1, p 1] , a matrix T1 whose rows generate the nonnegative left
kernel of G1B, and a matrix Y1 which verifies the conditions of
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(A, B)A-contractivity (5), (16) are given by

The polyhedral sets R[G, p] and R[G1 p1 ] are displayed on Fig. 1.
Figure 2 presents the set R[G1 p1 ] divided in 6 regions, as described in

Section 4.1. A trajectory of the state starting from one of the vertices,
obtained through the application of a control law of the same type as (30),
is represented by a dotted line in Fig. 2.

7. Conclusions

This work has studied the concept of (A, B)-invariance applied to
polyhedral sets of the state space of linear systems. This concept has proven
to be of fundamental importance to the control of constrained systems. An
explicit characterization of (A, B)-invariance for discrete-time systems has
been proposed, which amounts to necessary and sufficient conditions in the
form of linear matrix relations. The advantages of such a characterization,
when compared to the ones found in the literature, are twofold: it applies
to any convex polyhedron and it does not demand the computation of
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Fig. 1. Sets R[G, p] and V '(R[G, p], A).

Fig. 2. Polyhedron C*(R[G, p], A) divided in regions.



vertices. These advantages are particularly felt in computing the supremal
(A, B)-invariant set contained in a given polyhedron. A numerical method
has also been proposed for this computation, which uses the (A, B)-invari-
ance relations to generate only nonredundant inequalities and to furnish an
efficient test for convergence.

All these results have been specialized to the case of 0-symmetrical
polyhedral sets. In particular, it has been shown that (A, B)-invariance of
an unbounded symmetrical polyhedron is equivalent to the (A, B)-invariance
of a subspace plus the (A, B)-invariance of a compact polyhedron associated
to a reduced-order system.

The problem of computing a control law which achieves closed-loop
positive invariance of an (A, B)-invariant polyhedron has also been consid-
ered. A piecewise linear state feedback control law, proposed in the literature
for compact polyhedra, has been extended to the general case. However, the
implementation of this law is very complex. We think that the search for
simpler control laws should continue.

It has also been shown how the (A, B)-invariance results can be
extended to systems subject to bounded additive disturbances. An extension
of this work to continuous-time systems can be found also in Ref. 19.

References

1. BITSORIS, G., Positively Invariant Polyhedral Sets of Discrete-Time Linear Sys-
tems, International Journal of Control, Vol. 47, pp. 1713-1726, 1988.

2. BENZAOUIA, A., and BURGAT, C., Regulator Problem for Discrete-Time Systems
with Nonsymmetrical Constrained Control, International Journal of Control,
Vol. 48, pp. 2441-2451, 1988.

3. HENNET, J. C., Discrete-Time Constrained Linear Systems, Control and Dynamic
Systems, Edited by C. T. Leondes, Academic Press, San Diego, California, Vol.
71, pp. 157-213, 1995.

4. BLANCHINI, F., Feedback Control for Linear Time-Invariant Systems with State
and Control Bounds in the Presence of Disturbances, IEEE Transactions on Auto-
matic Control, Vol. 35, pp. 1231-1234, 1990.

5. BITSORIS, G., Existence of Positively Invariant Polyhedral Sets for Continuous-
Time Linear Systems, Control Theory and Advanced Technology, Vol. 7,
pp. 407-427, 1991.

6. CASTELAN, E. B., and HENNET, J. C., Eigenstructure Assignment for State-
Constrained Linear Continuous-Time Systems, Automatica, Vol. 28, pp. 605-611,
1992.

7. WONHAM, W. M., Linear Multivariable Control: A Geometric Approach,
Springer Verlag, New York, New York, 1985.

8. BASILE, G., and MARRO, G., Controlled and Conditioned Invariants in Linear
System Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

JOTA: VOL. 103, NO. 3, DECEMBER 1999 541



9. WITSENHAUSEN, H. S., Sets of Possible States of Linear Systems Given Perturbed
Observations, IEEE Transactions on Automatic Control, Vol. 13, pp. 556-558,
1968.

10. GLOVER, J. D., and SCHWEPPE, F. C., Control of Linear Dynamic Systems with
Set-Constrained Disturbances, IEEE Transactions on Automatic Control, Vol.
16, pp. 411-423, 1971.

11. BERTSEKAS, D. P., Infinite-Time Reachability of State-Space Regions by Using
Feedback Control, IEEE Transactions on Automatic Control, Vol. 17, pp. 604-
613, 1972.

12. GUTMAN, P. O., and CWIKEL, M., Admissible Sets and Feedback Control for
Discrete-Time Linear Systems with Bounded Control and States, IEEE Transac-
tions on Automatic Control, Vol. 31, pp. 373-376, 1986.

13. KEERTHI, S. S., and GILBERT, E. G., Computation of Minimum-Time Feedback
Control Laws for Discrete-Time Systems with State-Control Constraints, IEEE
Transactions on Automatic Control, Vol. 32, pp. 432-435, 1987.

14. BLANCHINI, F., Ultimate Boundedness Control for Uncertain Discrete-Time Sys-
tems via Set-Induced Lyapunov Functions, IEEE Transactions on Automatic
Control, Vol. 39, pp. 428-433, 1994.

15. GUTMAN, P. O., and CWIKEL, M., An Algorithm to Find Maximal State Con-
straint Sets for Discrete-Time Linear Dynamical Systems with Bounded Control
and States, IEEE Transactions on Automatic Control, Vol. 32, pp. 251-254,
1987.

16. SCHRIJVER, A., Theory of Linear and Integer Programming, John Wiley and
Sons, Chichester, England, 1987.

17. D'ALESSANDRO, P., DALLA MORA, M., and DE SANTIS, E., Techniques of
Linear Programming Based on the Theory of Convex Cones, Optimization, Vol.
20, pp. 761-777, 1989.

18. DOREA, C. E. T., and HENNET, J. C., On (A, B)-Invariance of Polyhedral
Domains for Discrete-Time Systems, Proceedings of the 35th IEEE Conference
on Decision and Control, Kobe, Japan, pp. 4319-4324, 1996.

19. DOREA, C. E. T., and HENNET, J. C., (A, B)-Invariance Conditions of Polyhedral
Domains for Continuous-Time Systems, Proceedings of the 1997 European Con-
trol Conference, Brussels, Belgium, WE-A-E1, Vol. 3, 1997.

20. DOREA, C. E. T., and HENNET, J. C., Computation of Maximal Admissible Sets
of Constrained Linear Systems, Proceedings of the 4th IEEE Mediterranean
Symposium on New Directions on Control and Automation, Maleme, Greece,
pp. 286-291, 1996.

21. BLANCHINI, F., and SZNAIER, M., Persistent Disturbance Rejection via Static
State Feedback, IEEE Transactions on Automatic Control, Vol. 40, pp. 1127-
1131, 1995.

22. D6REA, C. E. T., and HENNET, J. C., A Geometric Approach to the l1-Linear
Control Problem, Proceedings of the 36th IEEE Conference on Decision and
Control, San Diego, California, Vol. 2, pp. 1552-1557, 1997.

542 JOTA: VOL. 103, NO. 3, DECEMBER 1999


